
Digital Object Identifier (DOI) 10.1007/s100520000508
Eur. Phys. J. C 17, 611–621 (2000) THE EUROPEAN

PHYSICAL JOURNAL C
c© Società Italiana di Fisica

Springer-Verlag 2000

Generating QCD antennas

A. van Hamerena, R. Kleissb

University of Nijmegen, Nijmegen, The Netherlands

Received: 11 August 2000 / Published online: 23 October 2000 – c© Springer-Verlag 2000

Abstract. An extension of the SARGE algorithm of van Hameren, Kleiss and Draggiotis is introduced,
which includes the incoming momenta in the kinematical pole structure of the density with which the
momenta are generated. The algorithm is compared with RAMBO in the integration of QCD amplitudes
in the SPHEL approximation, and the computing times are extrapolated to those for the calculation with
exact matrix elements.

1 Introduction

In future experiments with hadron colliders, such as the
LHC, many multi-jet events will occur. These can be di-
vided into interesting events (IE) and the background.
The main difference between the two classes is that the
standard model shall not have proven yet its capability of
dealing with the description of the IE at the moment when
they are analyzed. The background shall not manifest it-
self as such a strong test for the standard model. However,
we still need to know the cross sections of the background
in order to compare the ratio of these and those of the IE
with the predictions of the standard model.

For a large part of the background, a piece of the tran-
sition amplitude consists of a multi-parton QCD ampli-
tude, and it is well known [5] that it contributes to the
cross section with a singular behavior in phase space (PS),
given by the so-called antenna pole structure (APS). In
particular, for processes involving only n gluons the most
important contribution comes from the sum of all permu-
tations in the momenta of

1
(p1 · p2)(p2 · p3)(p3 · p4) · · · (pn−1 · pn)(pn · p1) , (1)

and the singular nature stems from the fact that the scalar
products pi · pj can become very small. For the calcula-
tion of integrals over PS, the Monte Carlo (MC) method
is the only option, so that an algorithm to generate ran-
dom momenta is needed. For processes at high energy, the
momenta may be massless, and RAMBO [4] generates any
number of them distributed uniformly in PS. This uniform
distribution, however, has the disadvantage that, for the
integration of an integrand containing the APS, a large
number of events is needed to reach a result to accept-
able precision. As an illustration, we present in Table 1
the number of PS points needed to integrate the single

a e-mail: andrevh@sci.kun.nl
b e-mail: kleiss@sci.kun.nl

Table 1. Typical number of PS points for the integration of a
single antenna to an estimated precision of 1%

momenta
cut-off

CM energy
PS points

3 0.183 10, 069
4 0.129 26, 401
5 0.100 58, 799
6 0.0816 130, 591
7 0.0690 240, 436
8 0.0598 610, 570

antenna of (1), so not even the sum of its permutations,
to an expected error of 1%. The antenna cannot be inte-
grated over the whole of PS because of the singularities,
so these have to be cut out. This is done through the re-
striction (pi + pj)

2 ≥ s0 for all i, j = 1, . . . , n, and in the
table the ratio between s

1/2
0 and the total energy s1/2 is

given. These numbers are based on the reasonable choice
s0/s = 0.2/[n(n− 1)].

Performing MC integration with very many events is
not a problem if the evaluation of the integrand in each PS
point is cheap in computing time. This is, for example, the
case for algorithms to calculate the squared multi-parton
amplitudes based on the so-called SPHEL approximation,
for which only the kinematical structure of (1) is imple-
mented [5]. Nowadays, algorithms to calculate the exact
matrix elements exist, which are far more time consuming
[7,8]. As an illustration of what is meant by “more time
consuming”, we present Table 2 with the typical cpu time
needed for the evaluation in one PS point of the integrand
for processes of two gluons going to more gluons, both for
the SPHEL approximation and the exact matrix elements
[11]. It is expected, and observed, that the exact matrix
elements reveal the same kind of singularity structures as
the APS, so that, according to the tables, the PS integra-

612 A. van Hameren, R. Kleiss: Generating QCD antennas

Table 2. Typical computing times in seconds for the evalua-
tion of the integrand in 1 PS point

final gluons SPHEL exact

3 2.83 × 10−5 1.60 × 10−1

4 9.76 × 10−5 5.54 × 10−1

5 4.88 × 10−4 1.945
6 3.26 × 10−3 6.06
7 2.57 × 10−2 19.91
8 64.45

tion for a process with eight final gluons would take in the
order of 400 days . . .

The solution to this problem is importance sampling.
Instead of RAMBO, a PS generator should be used which
generates momenta with a density including the APS. In
[9], we introduced an algorithm that does part of the job,
which is called SARGE (from “staggered antenna radi-
ation generator”). It generates n random momenta with
a density proportional to the sum of all permutations of
(1), and because they are all random, they should be in-
terpreted as outgoing momenta. In the pole structure of
a “real” QCD amplitude, however, also the incoming mo-
menta occur. In this paper, we introduce an extension of
the SARGE algorithm, which includes these pole struc-
tures. We compare it with RAMBO in the calculation of
integrals of QCD amplitudes in the SPHEL approxima-
tion, and extrapolate the computing times to those for
the calculation with exact matrix elements. The conclu-
sion will be that SARGE takes care of a substantial re-
duction in computing time.

For the sake of completeness, we describe the full al-
gorithm in this paper, including the piece that was intro-
duced in [9]. What we actually presented there was only
the algorithm and no proof at all of its correctness. In
this paper, however, we shall meet our engagements with
respect to this. We do this with the help of the unitary
algorithm formalism, which we introduce in the following
section through its application to the RAMBO algorithm.

2 Notation
and the unitary algorithm formalism

The relativistic momentum p = (p0, p1, p2, p3) = (p0,p) of
an elementary particle is a vector in R4. The momentum
with the opposite 3-momentum is denoted by

p̃ = (p0,−p). (2)

We shall need the first and the fourth canonical basis vec-
tors, which we denote

e0 = (1, 0, 0, 0) and e3 = (0, 0, 0, 1). (3)

A typical parameterization of a 3-momentum with unit
length which we will also need is given by

n̂(z, ϕ) = (
√
1− z2 sinϕ,

√
1− z2 cosϕ, z). (4)

The Lorentz invariant scalar product shall be denoted
with a dot or with parentheses:

(pq) = p · q = p0q0 − p · q, (5)

where

p · q = p1q1 + p2q2 + p3q3. (6)

The product of a vector with itself is denoted as a square

p2 = (pp) = (p0)2 − |p|2, |p| = (p · p)1/2. (7)

The same notation for the quadratic form and the 2-com-
ponent will not lead to confusion, because the 2-compo-
nent will not appear explicitly anymore after this section.
For physical particles, p2 has to be positive, and in that
case, the square root gives the invariant mass of the par-
ticle:

mp =
√

p2 if p2 ≥ 0. (8)

A boost that transforms a momentum p, with p2 > 0, to
mpe0 is denoted Hp, so

Hpp = mpe0 and mpHpe0 = p̃. (9)

A rotation that transforms p to p0e0 + |p|e3 is denoted
Rp, so

Rpp = p0e0 + |p|e3 and Rpp̃ = p0e0 − |p|e3. (10)

Since rotations only change the 3-momentum, we shall
use the same symbol if a rotation is restricted to three-
dimensional space.

The physical PS of n particles is the (3n − 4)-dimen-
sional subspace of R4n, given by the restrictions that the
energies of the particles are positive, the invariant masses
squared p2i are fixed at given positive values si, and that
the sum

p(n) =
n∑

i=1

pi (11)

of the momenta is fixed at a given momentum P . The
restrictions for the separate momenta shall be expressed
with a “PS characteristic distribution”

ϑsi
(p) = δ(p2 − si)θ(p0), and ϑ(p) = ϑ0(p). (12)

The generic PS integral of a function F of a set {p}n =
{p1, . . . , pn} of momenta that has to be calculated is then
given by∫

R4n

(n∏
i=1

d4piϑsi(p)
)
δ4(p(n) − P)F ({p}n). (13)

An integral shall always start with a single
∫
symbol, and

for every integration variable, say z, a dz means “integrate
z over the appropriate integration region”. If it is not ev-
ident what this region is, it shall be made explicit with
the help of logical θ functions, which have statements Π
as argument, and are defined through

θ(Π) =

{
1 if Π is true,
0 if Π is false.

(14)

A. van Hameren, R. Kleiss: Generating QCD antennas 613

2.1 The RAMBO algorithm in the UAF

RAMBO was developed with the aim to generate the flat
PS distribution of n massless momenta as uniformly as
possible, and such that the sum of the momenta is equal to
s1/2e0 with s a given squared energy. This means that the
system of momenta is in its center-of-mass frame (CMF),
and that the density is proportional to the “PS character-
istic distribution”

Θs({p}n) = δ4(p(n) −
√
se0)

n∏
i=1

ϑ(pi). (15)

The algorithm consists of the following steps:

Algorithm 1 (RAMBO)

1. generate n massless vectors qj with positive energy
without constraints but under some normalized den-
sity f(qj);

2. compute the sum q(n) of the momenta qj ;
3. determine the Lorentz boost and the scaling transform
that bring q(n) to

√
se0;

4. perform these transformations on the qj , and call the
result pj .

Trivially, the algorithm generates momenta that satisfy
the various δ constraints, but it is not clear a priori that
the momenta have the correct distribution. To prove that
they actually do, we apply the unitary algorithm formal-
ism (UAF). We write the generation of a variable as the
integral of the density with which that variable is gener-
ated, and interpret every assignment as a generation with
a density that is given by a Dirac delta distribution. The
assignment of the final output should not be written as an
integral, but only with the delta distributions. The UAF
tells us that Algorithm 1 generates a density

Φs({p}n) =
∫  n∏

j=1

d4qjϑ(qi)f(qj)




× d4bδ4
(
b− q(n)

mq(n)

)
dxδ

(
x−

√
s

mq(n)

)

×
n∏

i=1

δ4(pi − xHbqi). (16)

The unitarity of the algorithm is expressed by the fact
that integration of the above equation over the set of vari-
ables {p}n leads to the identity 1 = 1. To calculate the
distribution yielded by this algorithm, the integral has
to be evaluated. First of all, some simple algebra using
p(n) = xHbq(n), q(n) = x−1H−1

b p(n) and the Lorentz and
scaling properties of the Dirac δ distributions leads to

δ4

(
b− q(n)

mq(n)

)
δ

(
x−

√
s

mq(n)

)

=
2s2

x
δ4(p(n) −

√
se0)δ(b2 − 1). (17)

Furthermore, since we may write

d4qjδ(q2j)δ
4(pj − xHbqj) =

1
x2

δ(p2j) (18)

under the integral, the l.h.s. of (16) becomes∫
Θs({p}n)d4bδ(b2 − 1)dx 2s2

x2n+1

×
n∏

i=1

f

(
1
x
H−1

b pi

)
θ(e0 · H−1

b pj > 0). (19)

In the standard RAMBO algorithm, the following choice
is made for f :

f(q) =
c2

2π
exp(−cq0), (20)

where c is a positive number with the dimension of an
inverse mass. Therefore, if we use that p(n) = s1/2e0 and
that q0 = e0 · q for any q, then

n∏
i=1

f

(
1
x
H−1

b pi

)
θ(e0 · H−1

b pi > 0)

=
(

c2

2π

)n

exp
(
− c

x
e0 · H−1

b p(n)

) n∏
i=1

θ(e0 · H−1
b pi > 0)

=
(

c2

2π

)n

exp
(
−c
√
s

x
b0
)

θ(b0 > 0). (21)

As a result of this, the variables pi, i = 1, . . . , n only
appear in Θs, as required. The remaining integral is cal-
culated in the Appendix, with the result that RAMBO
generates the density

Φs({p}n) = Θs({p}n)
(
2
π

)n−1
Γ (n)Γ (n− 1)

sn−2 . (22)

Incidentally, we have computed here the volume of the PS
for n massless particles:∫

R4n
d4npΘs({p}n) =

(π
2

)n−1 sn−2

Γ (n)Γ (n− 1) . (23)

Note, moreover, that c does not appear in the final answer;
this is only natural since any change in c will automatically
be compensated by a change in the computed value for x.
Finally, it is important to realize that the “original” PS
has dimension 3n, while the resulting one has dimension
3n − 4: there are configurations of the momenta qj that
are different, but after boosting and scaling end up as the
same configuration of the pj . It is this reduction of the
dimensionality that necessitates the integrals over b and
x.

3 The basic antenna

As mentioned before, we want to generate momenta that
represent radiated partons with a density that has the an-
tenna structure [(p1p2)(p2p3)(p3p4) · · · (pn−1pn)(pnp1)]−1.

614 A. van Hameren, R. Kleiss: Generating QCD antennas

Naturally, the momenta can be viewed as coming from a
splitting process: one starts with two momenta; a third is
radiated off creating a new pair of momenta of which a
fourth is radiated off and so on. In fact, models similar to
this are used in full-fledged Monte Carlo generators like
HERWIG. Let us therefore first try to generate a single
massless momentum k, radiated from a pair of given mass-
less momenta p1 and p2. In order for the distribution to
have the correct infrared and collinear behavior, it should
qualitatively be proportional to [(p1k)(kp2)]−1. Further-
more, we want the density to be invariant under Lorentz
transformations and scaling of the momenta, keeping in
mind that the momenta are three out of possibly more in
a CMF and that we have to perform these transformations
in the end, like in RAMBO. This motivates us to define
the basic antenna structure as

dA(p1, p2; k) = d4kϑ(k)
1
π

(p1p2)
(p1k)(kp2)

× g

(
(p1k)
(p1p2)

)
g

(
(kp2)
(p1p2)

)
. (24)

Here, g is a function that serves to regularize the infrared
and collinear singularities, as well as to ensure normal-
ization over the whole space for k: therefore, g(ξ) has to
vanish sufficiently fast for both ξ → 0 and ξ →∞. To find
out how k could be generated, we evaluate

∫
dA in the

CMF of p1 and p2. Writing

E =
√
(p1p2)/2, p = Hp1+p2p1, q = Hp1+p2k, (25)

we have

(p1p2) = 2E2 (26)

and

(p1k) = Eq0(1− z), (kp2) = Eq0(1 + z), (27)

where z = p · q/(|p||q|). The azimuthal angle of q is de-
noted ϕ, so that q = |q|R−1

p n̂(z, ϕ). We can write

d4kϑ(k) =
1
2
q0dq0dϕdz =

1
2
(p1p2)dϕdξ1dξ2, (28)

where,

ξ1 =
(p1k)
(p1p2)

and ξ2 =
(kp2)
(p1p2)

, (29)

so that z = (ξ2 − ξ1)/(ξ2 + ξ1) and q0 = E(ξ2 + ξ1). The
integral over dA takes on the particularly simple form∫

dA(p1, p2; k) =
(∫ ∞

0
dξ
1
ξ
g(ξ)

)2
. (30)

The antenna dA(p1, p2; k) will therefore correspond to a
unitary algorithm when we let the density g be normalized
by ∫ ∞

0
dξ
1
ξ
g(ξ) = 1. (31)

Note that the normalization of dA fixes the overall factor
uniquely: in particular the appearance of the numerator
(p1p2) is forced upon us by the unitarity requirement.

For g we want to take, at this point, the simplest pos-
sible function we can think of which has a sufficiently
regularizing behavior. We introduce a positive non-zero
number ξm and take

g(ξ) =
1

2 log ξm
θ(ξ−1

m ≤ ξ ≤ ξm). (32)

The number ξm gives a cut-off for the quotients ξ1 and
ξ2 of the scalar products of the momenta, and not for
the scalar products themselves. It is, however, possible to
relate ξm to the total energy s1/2 in the CMF and a cut-off
s0 on the invariant masses, i.e., the requirement that

(pi + pj)
2 ≥ s0 for all momenta pi �= pj . (33)

This can be done by choosing

ξm =
s

s0
− (n+ 1)(n− 2)

2
. (34)

The invariant masses (p1 + k)2 and (k + p2)
2 are regular-

ized with this choice, but can still be smaller than s0 so
that the whole of PS, cut by (33), is covered. The s0 can be
derived from physical cuts pT on the transverse momenta
and θ0 on the angles between the outgoing momenta:

s0 = 2p2Tmin

(
1− cos θ0,

(
1 +

√
1− p2T/s

)−1)
. (35)

With this choice, PS with the physical cuts is covered by
PS with the cut of (33). To generate the physical PS, the
method of hit-and-miss Monte Carlo can be used, i.e, if
momenta of an event do not satisfy the cuts, the whole
event is rejected. We end this section with the piece of the
PS algorithm that corresponds to the basic dA(p1, p2; k):

Algorithm 2 (Basic antenna)

1. given {p1, p2}, put p ← Hp1+p2p1 and put E ←
((p1p2)/2)1/2;

2. generate two numbers ξ1, ξ2 independently, each from
the density g(ξ)/ξ, and ϕ uniformly in [0, 2π);

3. put z ← (ξ2 − ξ1)/(ξ2 + ξ1), q0 ← E(ξ2 + ξ1) and
q← q0R−1

p n̂(z, ϕ);
4. put k ← H−1

p1+p2
q.

4 A complete QCD antenna

The straightforward way to generate n momenta with the
antenna structured density is by repeated use of the basic
antenna. Let us denote

dAi
j,k = dA(qj , qk; qi); (36)

A. van Hameren, R. Kleiss: Generating QCD antennas 615

then

dA21,ndA
3
2,ndA

4
3,n · · ·dAn−1

n−2,n = (37)

(q1qn)gn({q}n)
πn−2(q1q2)(q2q3)(q3q4) · · · (qn−1qn)

n−1∏
i=2

d4qiϑ(qi),

where

gn({q}n) = g

(
(q1q2)
(q1qn)

)
g

(
(q2qn)
(q1qn)

)
g

(
(q2q3)
(q2qn)

)

× g

(
(q3qn)
(q2qn)

)
· · · g

(
(qn−1qn)
(qn−2qn)

)
. (38)

So if we have two momenta q1 and qn, then we can easily
generate n − 2 momenta qj with the antenna structure.
Remember that this differential PS volume is completely
invariant under Lorentz transformations and scaling trans-
formations, so that it seems self-evident to force the set
of generated momenta in the CMF with a given energy,
using the same kind of transformation as in the case of
RAMBO. If the first two momenta are generated with
density f(q1, qn), then the UAF tells us that the gener-
ated density AQCDs ({p}n) satisfies

AQCDs ({p}n)
=
∫
d4q1ϑ(q1)d4qnϑ(qn)f(q1, qn)

×dA21,ndA32,ndA43,n · · ·dAn−1
n−2,n

×d4bδ4(b− q(n)/mq(n))dxδ(x−
√
s/mq(n))

×
n∏

i=1

δ4(pi − xHbqi). (39)

If we apply the same manipulations as in the proof of the
correctness of RAMBO, we obtain the equation

AQCDs ({p}n)
= Θs({p}n) (p1pn)gn({p}n)

πn−2(p1p2)(p2p3)(p3p4) · · · (pn−1pn)

×
∫
d4bδ(b2 − 1)dx2s

2

x5
f

(
1
x
H−1

b p1,
1
x
H−1

b pn

)
.(40)

Now we choose f so that q1 and qn are generated back-
to-back in their CMF with total energy s1/2, i.e.,

f(q1, qn) =
2
π
δ4(q1 + qn −

√
se0). (41)

If we evaluate the second line of (40) with this f , we arrive
at

4s2

π

∫
dx

1
x5
d4bδ(b2 − 1)δ4

(
1
x
H−1

b (p1 + pn)−
√
se0

)

=
4
π

∫ ∞

0
dx

1
x5

δ

(
(p1 + pn)

2

sx2
− 1
)
=

s2

2π(p1pn)2
, (42)

so that the generated density is given by

AQCDs ({p}n) = Θs({p}n) s2

2πn−2

× gn({p}n)
(p1p2)(p2p3) · · · (pn−1pn)(pnp1)

. (43)

Note that, somewhat surprisingly, also the factor (pnp1)−1
comes out, thereby making the antenna even more sym-
metric. In fact, if the density f(q1, q2) = c4 exp(−cq01 −
cq02)/4π

2 is taken instead of the one we just used, the cal-
culation can again be done exactly, with exactly the same
result. The algorithm to generate n momenta with the
above antenna structure is given by

Algorithm 3 (QCD antenna)

1. generate massless momenta q1 and qn;
2. generate n−2 momenta qj by the basic antennas dA21,n
dA32,ndA

4
3,n · · ·dAn−1

n−2,n;
3. compute q(n) =

∑n
j=1 qj , and the boost and scaling

transforms that bring q(n) to s1/2e0;
4. for j = 1, . . . , n, boost and scale the qj accordingly,
into the pj .

Usually, the event generator is used to generate a cut PS.
If a generated event does not satisfy the physical cuts, it
is rejected. In the calculation of the weight coming with
an event, the only contribution coming from the functions
g is, therefore, their normalization. In total, this gives a
factor 1/(2 log ξm)2n−4 in the density.

5 Incoming momenta and symmetrization

The density given by the algorithm above is not quite
what we want. First of all, we want to include the incom-
ing momenta p0 and p̃0 in the APS, so that the density be-
comes proportional to [(p0p1)(p1p2) · · · (pn−1pn)(pnp̃0)]−1
instead of [(p1p2) · · · (pn−1pn)(pnp1)]−1. Then we want the
sum of all permutations of the momenta, including the in-
coming ones.

5.1 Generating incoming momenta

The incoming momenta can be generated after the an-
tenna has been generated. To show how, let us introduce
the following “regularized” scalar product:

(pq)δ = (pq) + δp0q0, (44)

where δ is a small positive number. This regularization is
not completely Lorentz invariant, but that does not matter
here. Important is that it is still invariant under rotations,
as we shall see. Using this regularization, we are able to
generate a momentum k with a probability density

1
2πIδ(p1, p2)

ϑ(k)δ(k0 − 1)
(p1k)δ(k̃p2)δ

. (45)

616 A. van Hameren, R. Kleiss: Generating QCD antennas

To show how, we calculate the normalization Iδ(p1, p2).
Using the Feynman representation of 1/[(p1k)δ(k̃p2)δ], it
is easy to see that

Iδ(p1, p2) =
1

4πp01p
0
2

∫
dzdϕ

∫ 1

0

dx
(1 + δ − |px|z)2 , (46)

where px = xp̂1 + (x − 1)p̂2. The integral over z and ϕ
can now be performed, with the result that

Iδ(p1, p2) =
1

p01p
0
2

∫ 1

0

dx
(1 + δ)2 − |px|2

=
1

2(p1p̃2)

∫ 1

0

dx
(x+ − x)(x− x−)

, (47)

where

x± =
1
2
± 1
2

√
1 +

2p01p
0
2(2δ + δ2)
(p1p̃2)

(48)

are the solutions for x of the equation 1+δ = |px|. Further
evaluation finally leads to

Iδ(p1, p2) =
(p1p̃2)−1

x+ − x−
log
∣∣∣∣x+x−

∣∣∣∣ . (49)

Notice that there is a smooth limit to the case in which
p1 and p2 are back-to-back:

Iδ(p, p̃) = lim
q→p̃

Iδ(p, q) =
1

(p0)2(2δ + δ2)
. (50)

The algorithm to generate k can be derived by reading the
evaluations of the integrals backwards.

Because k and k̃ are back-to-back, they can serve as
the incoming momenta. To fix them to e0+e3 and e0−e3,
the whole system of momenta can be rotated. If we gen-
erate momenta with the density AQCDs , use the first two
momenta to generate the incoming momenta and rotate,
we get a density

Ds({p}n) =
∫
d4nqAQCDs ({q}n)d4k 1

2πIδ(q1, q2)

× ϑ(k)δ(k0 − 1)
(q1k)δ(q2k̃)δ

n∏
i=1

δ4(pi −Rkqi)

= AQCDs ({p}n)Iδ(p1, p2)−1

×
∫
d4k

ϑ(k)δ(k0 − 1)
2π(p1Rkk)δ(p2Rkk̃)δ

, (51)

where we used the fact that the whole expression is invari-
ant under rotations, and that these are orthogonal trans-
formations. The last line of the previous expression can
be evaluated further with the result that

Ds({p}n) = AQCDs ({p}n) Iδ(p1, p2)−1

(p1p0)δ(p̃0p2)δ
, (52)

with

p0 = e0 + e3, p̃0 = e0 − e3. (53)

The algorithm to generate the incoming momenta is given
by

Algorithm 4 (Incoming momenta)

1. given a pair {p1, p2}, calculate x+ and x−;
2. generate x in [0, 1] with density ∼ [(x+−x)(x−x−)]−1,
and put px ← xp̂1 + (x− 1)p̂2;

3. generate ϕ uniformly in [0, 2π), z in [−1, 1] with den-
sity ∼ (1 + δ − |px|z)−2;

4. put k← R−1
px

n̂(z, ϕ) and k0 ← 1;
5. rotate all momenta with Rk;

6. put p0 ← 1
2
√
s(e0 + e3) and p̃0 ← 1

2
√
s(e0 − e3).

Notice that Iδ(p1, p2)(p1p0)δ(p̃0p2)δ is invariant under the
scaling p1, p2 → cp1, cp2 with a constant c, so that scaling
of p0 and p̃0 has no influence on the density.

The pair (q1, q2) with which k is generated one is free to
choose because we want to symmetrize in the end anyway.
We should only choose it in such a way that we get rid of
the factor (q1q2) in the denominator of AQCDs ({q}n).

5.2 Choosing the type of antenna
with incoming momenta

A density which is the sum over permutations can be ob-
tained by generating random permutations, and return-
ing the generated momenta with permutated labels. This,
however, only makes sense for the outgoing momenta. The
incoming momenta are fixed, and should be returned sepa-
rately from the outgoing momenta by the event generator.
Therefore, a part of the permutations has to be generated
explicitly. There are two kinds of terms in the sum: those
in which (p0p̃0) appears, and those in which it does not.

Case 1: antenna with (p0p̃0). To generate the first kind,
we can choose a label i at random with a weight equal
to (pipi+1)/Σ1({p}n), where Σ1({p}n) is the sum of all
scalar products in the antenna1:

Σ1({p}n) =
n∑

i=1

(pipi+1). (54)

This is a proper weight, since all scalar products are pos-
itive. The total density then gets this extra factor, so
that (pipi+1) cancels. The denominator of the weight fac-
tor does not give a problem, because its singular struc-
ture is much softer than the one of the antenna. The
pair {pi, pi+1} can then be used to generate the incom-
ing momenta, as shown above. So in this case, a density
AQCDs ({p}n)B1({p}n)/Σ1({p}n) is generated, where

B1({p}n) =
n∑

i=1

(pipi+1)Iδ(pi, pi+1)−1

(pip0)δ(p̃0pi+1)δ
. (55)

Case 2: antenna without (p0p̃0). To generate the second
kind, we can choose two non-equal labels i and j with
weight (pipi+1)(pjpj+1)/Σ2({p}n), where

1 Read i + 1 mod n when i + 1 occurs in this section

A. van Hameren, R. Kleiss: Generating QCD antennas 617

Σ2({p}n) =
n∑

i �=j

(pipi+1)(pjpj+1). (56)

Next, a pair (k, l) of labels has to be chosen from the set
of pairs

{(i, j)}+ = {(i, j), (i, j + 1), (i+ 1, j), (i+ 1, j + 1)}.
(57)

If this is done with weight Iδ(pk, pl)/Σi,j({p}n), where

Σi,j({p}n) =
∑

(k,l)∈{(i,j)}+

Iδ(pk, pl), (58)

then the density AQCD
s ({p}n)B2({p}n)/Σ2({p}n) is gener-

ated, where

B2({p}n) =
n∑

i �=j

(pipi+1)(pjpj+1)

×
∑

(k,l)∈{(i,j)}+

Iδ(pk, pl)
Σi,j({p}n) ·

Iδ(pk, pl)−1

(pkp0)δ(p̃0pl)δ

=
n∑

i �=j

(pipi+1)(pjpj+1)
(pip0)δ(pi+1p0)δ(p̃0pj)δ(p̃0pj+1)δ

×
∑
(k,l)∈{(i,j)}+

(pkp0)δ(p̃0pl)δ∑
(k,l)∈{(i,j)}+

Iδ(pk, pl)
. (59)

Before all this, we first have to choose between the two
cases, and the natural way to do this is with relative
weights (1/2)sΣ1({p}n) and Σ2({p}n), so that the com-
plete density is equal to

SQCDs ({p}n) = 1
n!

∑
perm.

AQCDs ({p}n)

×
1
2
sB1({p}n) +B2({p}n)
1
2
sΣ1({p}n) +Σ2({p}n)

, (60)

where the first sum is over all permutations of (1, . . . , n).
One can, of course, try to optimize the weights for the
two cases using the adaptive multi-channel method (cf.
[3]). The result of using the sum of the two densities
is that the factors (pipi+1) in the numerator of B1 and
(pipi+1)(pjpj+1) in the numerator of B2 cancel with the
same factors in the denominator of AQCDs , so that we get
exactly the pole structure we want. The “unwanted” sin-
gularities in B1, B2 and Σ1, Σ2 are much softer than the
ones remaining in AQCDs , and cause no trouble. The algo-
rithm to generate the incoming momenta and the permu-
tation is given by

Algorithm 5 (Choose incoming pole structure)

1. choose case 1 or 2 with relative weights 1
2sΣ1({p}n)

and Σ2({p}n);

2. in case 1, choose i1 with relative weight (pi1pi1+1) and
put i2 ← i1 + 1;

3. in case 2, choose (i, j) with (i �= j) and relative weight
(pipi+1)(pjpj+1), and then choose (i1, i2) from
{(i, j)}+ with relative weight Iδ(pi1 , pi2);

4. use {pi1 , pi2} to generate the incoming momenta with
Algorithm 4;

5. generate a random permutation σ ∈ Sn and put pi ←
pσ(i) for all i = 1, . . . , n.

An algorithm to generate the random permutations can
be found in [1]. An efficient algorithm to calculate a sum
over permutations can be found in [6].

6 Improvements

When doing calculations with this algorithm on a PS, cut
such that (pi + pj)

2
> s0 for all i �= j and some reason-

able s0 > 0, we notice that a very high percentage of the
generated events does not pass the cuts. An important
reason why this happens is that the cuts, generated by
the choices of g, (32), and ξm, (34), are implemented only
on quotients of scalar products that appear explicitly in
the generation of the QCD antenna:

ξi
1 =

(pi−1pi)
(pi−1pn)

and ξi
2 =

(pipn)
(pi−1pn)

, (61)

for all i = 2, 3 . . . , n− 1.
The total number of these ξ variables is

nξ = 2n− 4, (62)

and the cuts are implemented such that ξ−1
m ≤ ξi

1,2 ≤ ξm
for i = 2, 3 . . . , n − 1. We show now how these cuts can
be implemented on all quotients

(pi−1pi)
(pj−1pj)

,
(pi−1pi)
(pjpn)

and
(pipn)
(pjpn)

, (63)

for all i, j = 2, 3, . . . , n− 1.
We define the m-dimensional convex polytope

Pm = {(x1, . . . , xm) ∈ [−1, 1]m
∣∣

|xi − xj | ≤ 1 ∀i, j = 1, . . . ,m}, (64)

and replace the generation of the ξ variables by the fol-
lowing

Algorithm 6 (Improvement)

1. generate (x1, . . . , xnξ
) distributed uniformly in Pnξ

;
2. define x0 = 0 and put

ξi
1 ← e(x2i−3−x2i−4) log ξm , ξi

2 ← e(x2i−2−x2i−4) log ξm

(65)

for all i = 2, . . . , n− 1.

618 A. van Hameren, R. Kleiss: Generating QCD antennas

Fig. 1. Schematic view on phase space

Because all the variables xi are distributed uniformly such
that |xi − xj | ≤ 1, all quotients of (63) are distributed
such that they are between ξ−1

m and ξm. In terms of the
variables xi, this means that we generate the volume of
Pnξ

, which is nξ + 1, instead of the volume of [−1, 1]nξ ,
which is 2nξ . In [10], we give the algorithm to generate
variables distributed uniformly in Pm. We have to note
here that this improvement only makes sense because the
algorithm to generate these variables is very efficient. The
total density changes such, that the function gn in (43)
has to be replaced by

gP
n (ξm; {ξ}) =

θ((x1, . . . , xnξ
) ∈ Pnξ

)
(nξ + 1)(log ξm)nξ

, (66)

where the variables xi are functions of the variables ξi
1,2

as defined by (65). Because hit-and-miss MC is used to
restrict generated events to cut PS, again only the nor-
malization has to be calculated for the weight of an event.

With this improvement, still a large number of events
does not pass the cuts. The situation with PS is depicted in
Fig. 1. Phase space contains generated phase space which
contains cut phase space. The problem is that most events
fall in the shaded area, which is the piece of generated PS
that is not contained in cut PS. To get a higher percentage
of accepted events, we use a random variable ξv ∈ [0, ξm],
instead of the fixed number ξm, to generate the variables
ξi
1,2. This means that the size of the generated PS becomes
variable. If this is done with a probability distribution such
that ξv can, in principle, become equal to ξm, then the
whole of cut phase space is still covered. We suggest the
following, tunable, density: introduce a parameter α ≥ 0
and take

hα(ξv) =
αnξ + 1

(log ξm)αnξ+1
(log ξv)αnξ

ξv
θ(1 ≤ ξv ≤ ξm). (67)

If α = 0, then log ξv is distributed uniformly in [0, log ξm],
and for larger α, the distribution peaks more and more
towards ξv = ξm. Furthermore, the variable is easy to
generate and the total generated density can be calculated
exactly: gP

n (ξm; {ξ}) should be replaced by
GP

n (α, ξm; {ξ})
=
∫
dξvhα(ξv)gP

n (ξv; {ξ}) (68)

=
1

nξ + 1
αnξ + 1

(log ξm)αnξ+1

∫ log ξm

log ξlow

dxx(α−1)nξ ,

where ξlow is the maximum of the ratios of scalar products
in (63).

Table 3. Cpu times (τSPHEL) in seconds needed to evaluate
the SPHEL integrand one time with a 300MHz UltraSPARC-
IIi processor, and the cpu times (τexact) needed to evaluate the
exact integrand, estimated with the help of Table 1

n τSPHEL (s) τexact (s)

4 5.40 × 10−5 3.07 × 10−1

5 2.70 × 10−4 1.08
6 1.80 × 10−3 3.35
7 1.41 × 10−2 10.92

7 Results and conclusions

We compare SARGE with RAMBO in the integration of
the SPHEL integrand for processes of the kind gg → ng,
which is given by

∑
perm.

2
∑n+1

i �=j (pipj)4

(p1p2)(p2p3)(p3p4) · · · (pnpn+1)(pn+1pn+2)(pn+2p1)
,

(69)

where p1 and p2 are the incoming momenta, and the first
sum is over all permutations of (2, 3, . . . , n+2) except the
cyclic permutations. The results are presented in Table 4.

The calculations were done at a CM energy s1/2 =
1000 with cuts pT = 40 on each transverse momentum and
θ0 = 30◦ on the angles between the momenta. We present
the results for n = 4, 5, 6, 7, calculated with RAMBO and
SARGE with different values for α, see (68). The value of
σ is the estimate of the integral at an estimated error of
1% for n = 4, 5, 6 and 3% for n = 7. These numbers are
only printed to show that different results are compatible.
Remember that these are not the whole cross sections: flux
factors, color factors, sums and averages over helicities,
and coupling constants are not included. The other data
are the number of generated events (Nge), the number of
accepted events (Nac) that passed the cuts, the cpu time
consumed (tcpu), and the cpu time the calculation would
have consumed if the exact matrix element had been used
(texa), both in hours. This final value is estimated with
the help of Table 3 and the formula

texa = tcpu +Nac(τexact − τSPHEL), (70)

where τexact and τSPHEL are the cpu times it takes to evalu-
ate the squared matrix element once. Remember that the
integrand only has to be evaluated for accepted events.
The calculations have been performed with a single 300
MHz UltraSPARC-IIi processor.

The first conclusion we can draw is that SARGE out-
performs RAMBO in computing time for all processes.
This is especially striking for a lower number of outgoing
momenta, and this behavior has a simple explanation: we
kept the CM energy and the cuts fixed, so that there is less
energy to distribute over the momenta if n is larger, and
the cuts become relatively tighter. As a result, RAMBO
gains on SARGE if n becomes larger. This effect would
not appear if the energy, or the cuts, would scale with n

A. van Hameren, R. Kleiss: Generating QCD antennas 619

Table 4. Results for the integration of the SPHEL integrand with n = 4, 5, 6, 7 outgoing
gluons. The CM energy and the cuts used are s1/2 = 1000, pT = 40 and θ0 = 30◦. Presented
are the finial result (σ), the number of generated (Nge) and accepted (Nac) events, the cpu
time (tcpu) in hours, and the cpu time (texa) it would take to integrate the exact matrix
element, estimated with the help of Table 3. In the calculation of this table, adaptive multi-
channeling in the two cases of Sect. 5.2 was used, and δ = 0.01 (Sect. 5.1)

error n algorithm σ Nge Nac tcpu(h) texa(h)

1% 4 RAMBO 4.30 × 108 4, 736, 672 3, 065, 227 0.198 262
SARGE, α = 0.0 4.31 × 108 296, 050 111, 320 0.0254 9.52
SARGE, α = 0.5 4.37 × 108 278, 702 40, 910 0.0172 3.51
SARGE, α = 10.0 4.32 × 108 750, 816 23, 373 0.0348 2.03

1% 5 RAMBO 3.78 × 1010 4, 243, 360 1, 712, 518 0.286 514
SARGE, α = 0.0 3.81 × 1010 715, 585 167, 540 0.133 51.6
SARGE, α = 0.5 3.80 × 1010 1, 078, 129 36, 385 0.0758 11.7
SARGE, α = 10.0 3.81 × 1010 6, 119, 125 21, 111 0.277 9.10

1% 6 RAMBO 3.07 × 1012 3, 423, 981 700, 482 0.685 653
SARGE, α = 0.0 3.05 × 1012 2, 107, 743 276, 344 1.32 258
SARGE, α = 0.5 3.13 × 1012 6, 136, 375 34, 095 0.471 32.2
SARGE, α = 10.0 3.05 × 1012 68, 547, 518 17, 973 3.17 19.9

3% 7 RAMBO 2.32 × 1014 605, 514 49, 915 0.224 152
SARGE, α = 0.0 2.16 × 1014 710, 602 42, 394 1.86 130
SARGE, α = 0.5 2.20 × 1014 5, 078, 153 3, 256 0.452 10.3
SARGE, α = 10.0 2.28 × 1014 125, 471, 887 1, 789 6.74 12.2

like in Table 1. Another indication for this effect is the fact
that the ratio Nac/Nge for RAMBO, which estimates the
ratio of the volumes of cut PS and whole PS, decreases
with n.

Another conclusion that can be drawn is that SARGE
performs better if α is larger. Notice that the limit of
α → ∞ is equivalent with dropping the improvement of
the algorithm using the variable ξv (68). Only if the inte-
grand becomes too flat, as in the case of n = 7 with the
energy and the cuts as given in the table, smaller values
are preferable. Then, too many events do not pass the cuts
if α is large.

As an extra illustration of the performance of SARGE,
we present in Figs. 2 and 3 the evaluation of MC integrals
as a function of the number of accepted events.

Depicted are the integral σ with the bounds on the
expected deviation coming from the estimated expected
error, and the relative error. Especially the graphs with
the relative error are illustrative, since they show that
it converges to zero more smoothly for SARGE then for
RAMBO. Notice the spike for RAMBO around Nac =
25000, where an event obviously hits a singularity.

8 Other pole structures

The APS of (1) is not the only pole structure occurring
in the squared amplitudes of QCD processes; not even
in purely gluonic processes. For example, in the case of
gg→ 4g, also permutations of

Fig. 2. The convergence of the MC process in the integration
of the SPHEL integrand for n = 5, with s1/2 = 1000, pT = 40
and θ0 = 30◦. The graphs show the integral itself as function
of the number of accepted events, together with the estimated
bounds on the expected deviations. SARGE was used with
adaptive multi-channeling in the two cases of Sect. 5.2, with
δ = 0.01 (Sect. 5.1) and without the variable ξv. The number
of generated events was 6, 699, 944, and the cpu time was 0.308
hours

Fig. 3. The relative error in the same processes as in Fig. 2

620 A. van Hameren, R. Kleiss: Generating QCD antennas

1
(p1p3)(p2p4)(p0p1)(p̃0p2)(p0 − p1 − p2)

2 (71)

occur [5]. If one is able to generate momenta with this
density, it can be included in the whole density with the
use of the adaptive multi-channel technique. In the inter-
pretation of the transition amplitude as a sum of Feynman
diagrams, this kind of pole structures typically comes from
t-channel diagrams, which are of the type

and where, for this case, Q1 = p1 + p3 and Q2 = p2 + p4,
so that k = p0 − p1 − p3. The natural way to generate a
density with this pole structure is by generating si = Q2i
with a density proportional to 1/si, a variable t that plays
the role of (p0 − p1 − p3)

2, construct with this and some
generated angles the momenta Qi, and then split new mo-
menta from each of these. For n = 4, only two momenta
have to split off each Qi, and there is a reasonable simple
algorithm to generate these.

We shall now just present the algorithm, and then show
its correctness using the UAF. If we mention the genera-
tion of some random variable x “with a density f(x)” in
the following, we mean a density that is proportional to
f(x), and we shall not always write down the normaliza-
tion explicitly. Furthermore, s denotes the square of the
CM energy and λ = λ(s, s1, s2) the usual Mandelstam
variable

λ = s2 + s21 + s22 − 2ss1 − 2ss2 − 2s1s2. (72)

Of course, a cut has to be implemented in order to gener-
ate momenta following (71), and we shall be able to put
(pipj) > (1/2)s0 for the scalar products occurring in the
denominator, where s0 only has to be larger than zero. To
generate the momenta with density (71), one should use

Algorithm 7 (t-Channel)

1. generate s1 and s2 between s0 and s with density 1/s1
and 1/s2;

2. generate t between s − s1 − s2 ±
√

λ(s, s1, s2) with
density 1/[t(t+ 2s1)(t+ 2s2)];

3. put z ← (s−s1−s2− t)/
√
λ and generate ϕ uniformly

in [0, 2π);
4. put Q1 ← (

√
s1 + λ/(4s),

√
λ/(4s)n̂(z, ϕ)) and Q2 ←√

se0 −Q1;
5. for i = 1, 2, generate zi > 1−4s0/(t+2si) with density
1/(1 − zi) and ϕi uniformly in [0, 2π), and put qi ←
1
2
√
si(1, n̂(zi, ϕi));

6. for i = 1, 2, rotate qi to the CMF of Qi, then boost it
to the CMF of Q1 +Q2 to obtain pi, and put pi+2 ←
Qi − pi.

As a final step, the incoming momenta can be put to
p0 ← (1/2)s1/2(e0+ e3) and p̃0 ← (1/2)s1/2(e0− e3). The
variables si and zi can easily be obtained by inversion (cf.
[2]). The variable t can best be obtained by generating
x = log(2(s1s2)1/2) − log t with the help of the rejection
method (cf. [2]). In the UAF, the steps of the algorithm
read as follows. Denoting

ε1 = e0 + e3. ε2 = e0 − e3, (73)

h± = s− s1 − s2 ±
√
λ, (74)

and

nrm(s, s1, s2) =
∫

dt
t(t+ 2s1)(t+ 2s2)

θ(h− < t < h+)

=
1/4

s1 − s2

[
1
s2
log

1 + 2s2/h−
1 + 2s2/h+

− 1
s1
log

1 + 2s1/h−
1 + 2s1/h+

]
, (75)

we have

1.
∫
ds1
s1

ds2
s2

θ(s0 < s1,2 < s)(
log s

s0

)2
2.
∫

dt
t(t+ 2s1)(t+ 2s2)

θ(h− < t < h+)
nrm(s, s1, s2)

3.
∫
dzδ

(
z − s− s1 − s2 − t√

λ

)
dϕ
2π

4.
∫
d4Q1δ

(
Q01 −

√
s1 +

λ

4s

)
δ3

(
Q1 −

√
λ

4s
n̂(z, ϕ)

)

×d4Q2δ4(Q1 +Q2 −
√
se0)

5.
∫ 2∏

i=1

dzi

1− zi

θ
(
1− zi > 4s0

t+2si

)
log t+2si

2s0

dϕi

2π

×d4qiδ

(
q0i −

1
2
√
si

)
δ3(qi − q0i n̂(zi, ϕi))

6.
∫ 2∏

i=1

d4biδ
4(bi −HQi

εi)

×δ4(pi −H−1
Qi
R−1

bi
qi)δ4(pi+2 + pi −Qi).

The various assignments imply the following identities.
First of all, we have

(pi + pi+2)
2 = Q2i = si. (76)

Using that 4ss1 + λ = (s+ s1 − s2)2 we find
√
4s(ε1 ·Q1) = s+ s1 − s2 − z

√
λ = t+ 2s1, (77)

and the same for (1↔ 2), so that

t = 4(p0 ·Q1)− 2(p1 + p3)
2 = −2(p0 − p1 − p3)

2
. (78)

A. van Hameren, R. Kleiss: Generating QCD antennas 621

Denote LQi
= Rbi

HQi
, so that qi = LQi

pi. Because
LQiεi ∼ ε1, we find that

1− zi =
2(ε1 · qi)√

si
= 2

(ε1 · LQi
pi)

(ε1 · LQiQi)
= 2

(εi · pi)
(εi ·Qi)

, (79)

so that

(t+ 2s1)(1− z1) = 8(p0 · p1) (80)

and

(t+ 2s2)(1− z2) = 8(p̃0 · p2). (81)

We can conclude so far that the algorithm generates the
correct pole structure. For the further evaluation of the
integrals one can forget about the factors si, t, t+2si and
1− zi in the denominators. Using that

d4qiδ

(
q0i −

1
2
√
si

)
δ3(qi − q0i n̂(zi, ϕi))

= 2d4qiϑ(qi)δ3
(
2√
si

qi − n̂(zi, ϕi)
)

, (82)

and replacing step 4 by(∏2
i=1 2

√
s1 +

λ

4s
d4Qiϑsi(Qi)

)
δ(z(Q1)− z)

×δ(ϕ(Q1)− ϕ)δ4(Q1 +Q2 −
√
se0), (83)

the integrals can easily be performed backwards, i.e., in
the order qi, ϕi, zi, bi, Qi, ϕ, z, t, s1, s2. The density
finally is

Θs({p}4)
(p0p1)(p̃0p2)(p1p3)(p2p4)[−(p0 − p1 − p3)

2]

× s

24(2π)3

×
[(
log

s

s0

)2
log

t+ 2s1
2s0

log
t+ 2s2
2s0

nrm(s, s1, s2)

]−1

×θ(2(p0p1) > s0)θ(2(p̃0p2) > s0)
×θ(2(p1p3) > s0)θ(2(p2p4) > s0), (84)

where si = (pi + pi+2)
2 and t = −2(p0 − p1 − p3)

2.

Appendix

We have to calculate the integral

2s2
(

c2

2π

)n ∫
dxd4bδ(b2 − 1)θ(b0 > 0)

× 1
x2n+1

exp
(
−c
√
s

x
b0
)
=
2Γ (2n)B(n)
(2π)nsn−2 , (85)

where

B(n) =
∫
d4bδ(b2 − 1)θ(b0 > 0)(b0)−2n

= 2π
∫∞
1 db0(b0)−2n

√
(b0)2 − 1. (86)

The “Euler substitution” b0 = (1/2)(v1/2 + v−1/2) casts
the integral in the form

B(n) = 22n−2π
∫ ∞

1
dv
(v − 1)2vn−2

(v + 1)2n
. (87)

By the transformation v → 1/v it can easily be checked
that the integral from 1 to ∞ is precisely equal to that
from 0 to 1, so that we may write

B(n) =
22n−2π
2

∫ ∞

0
dv

vn − 2vn−1 + vn−2

(1 + v)2n

= 4n−1π
Γ (n− 1)Γ (n)

Γ (2n)
, (88)

where we have used, by writing z = 1/(1 + v), that

∫ ∞

0
dvvp(1 + v)−q =

∫ 1

0
dzzq−p−2(1− z)p

=
Γ (q − p− 1)Γ (p+ 1)

Γ (q)
. (89)

References

1. D.E. Knuth, The art of computer programming, vol. 2, 2nd
ed. (Princeton, 1991)

2. L. Devroye, Non-uniform random variate generation
(Springer, 1986)

3. R. Kleiss, R. Pittau, Comp. Phys. Comm. 83, 141 (1994)
4. W.J. Stirling, R. Kleiss, S.D. Ellis, Comp. Phys. Comm.

40, 359 (1986)
5. J.G.M. Kuijf, Multiparton production at hadron colliders,

PhD thesis (University of Leiden, 1991)
6. F. Berends, H. Kuijf, Nucl. Phys. B 353, 59 (1991)
7. P. Draggiotis, R. Kleiss, C.G. Papadopoulos, Nucl. Phys.

B 439, 157 (1998)
8. F. Caravaglios, M.L. Mangano, M. Moretti, R. Pittau,

Nucl. Phys. B 539, 215 (1999)
9. A. van Hameren, R. Kleiss, P. Draggiotis, Phys. Lett. B

483, 124 (2000)
10. A. van Hameren, R. Kleiss, preprint physics/0003078
11. P. Draggiotis, private communication

